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Abstract. In the paper, the parametric sensitivity analysis in the problem of flutter of
viscoelastic cylindrical shells, with an arbitrary difference function of relaxation, is
examined by the Laplace integral transform method. The critical value of free stream
velocities and vibrations frequencies are determined from the condition that the real parts of
the poles in Bromwich integral must be zero, which corresponds to the harmonic motion.
Exact value of critical speed and corresponding frequency for a general isotropic
viscoelastic constitutive relation with constant Poisson ratio are obtained. The solutions are
analyzed for critical, subcritical and supercritical cases. The limit cases for short and long
time are analyzed. Influence of acrodynamical damper is studied assuming the parameter of
viscous property of material is smaller enough in comparison with the parameter of
aerodynamical damper and vice versa.
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1. Introduction

There are a lot of solution methods of flutter problem in literature. The first
investigation in this field is carried out in [1], which shows that the viscoelastic
flutter speed may be larger or smaller than the corresponding elastic one. The
similar result is also obtained in [2-6]. In [7] it is shown that the consideration of
piezoelectric and viscoelastic effects does not only decrease the probabilities of
failure, but also leads their occurrence in time and decreases the influence of
aerodynamic noise on structures. In [8], the flutter analysis is carried out in the
complex plane and calculatory computerized iterative method for the determination
of flutter speeds and frequencies. The influence of viscoelastic material properties
(storage and loss module) is evaluated. A new approach for an elastic flutter
problems is discussed in [9]. Vibrations and asymptotical stability of viscoelastic
strip for an exponential kernel of relaxation are investigated in [10]. It is shown
that the critical speed is the same as an elastic strip, but viscoelastic properties of
material influence the character of motion only in a subcritical domain.

A new approach for solution of flutter problems for viscoelastic materials with
any relaxation functions in the stress strain constitutive relations is proposed in the
current work. Using the Bubnov-Galerkin method the problem of flutter of
viscoelastic shells is reduced to the solution of a certain system of integro-
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differential equations with appropriate initial conditions. Taking into account only
first two equations of this system, the problem is solved by means of Laplace
integral transform method using the method of contour integration and convolution
of functions. The calculation of contour integral is usually accomplished through
the use of residue theory. For this reason it is necessary to know the poles and the
branch points of integrand after considering analytical continuation of the complex
plane. In order to obtain the poles for any kernel of relaxation we suppose the
viscous resistance of viscoelastic material is smaller than the elastic one, which is
satisfied for all viscoelastic solids. The real and imaginary parts of poles, which
corresponds to the damped coefficients and frequencies of vibrations respectively,
are obtained.

Preliminarily, these results are obtained for the constant Poisson ratio. In
[11-15] the solution technique systematizes the solution of wide class of
viscoelastic problems for any functions of relaxations. Using [11-15] the obtained
results in this research are generalized for all possible cases.

2. Statement of the Problem

Let us consider the problem of moving in a gas with a supersonic speed
V  of viscoelastic cylindrical shell which occupies the domain

0<a<q,0<p<p in the a0f coordinate system, where «a,f -

dimensionless coordinates (& changes along the generator and £ is the central

angl) on the shell. Lateral vibrations of the shell appear during this action. After a
certain value of velocity V the amplitudes of these vibrations increase without
bounds for t — oo. The flutter problem consists of finding the minimum value of
these velocities which is called critical.

If the Poisson ratio is constant, the problem reduces to the equation
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where A= o +6_2 is Laplacian, ¢2 = h B= pOK, h - thikness of

oa’ op 12R* (1-v?) A
shell, E - elastisity modulus, v- Poisson coefficients, p - dencity, B - damper
coefficient, P, and C, are pressure and sound velocity in gas in infinity, x -
polytropic exponent of gas, 81"(1’)— kernel of relaxation, and CD(t,a,,B) is the

function in which
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where U,V,W are the coordinates of displacement vector of the shell.

In the first part of our investigation we will consider a viscoelastic solid for
which the kernel of relaxation satisfies the conditions

} w=A0, )

t
0<e[T(s)ds <1

for any t. For this reason we will assume & to be a small positive parameter.
Equation (1) will be solved by zero initial and the following boundary
conditions

2

D=0, aq)zo for ¢ =0 andfor =1,
oa’

®=0, azq):() for f=0 andfor f=1.
op

This boundary-value problem has a trivial solution ®(t, «, #)=0 , satisfying zero

initial conditions. The flutter problem consists of finding the least velocity, called
critical, after exceeding of which the trivial solution becomes instable.

3. Solution for small viscosity

We search for the solution of equation (1) by using Bubnov-Galyorkin
method. If {(pik (a, ﬂ)} is the full set of coordinate functions, satisfying the

boundary conditions, solution may be represented by the series

(D Z flk ¢|k a, ﬁ) (3)
Substituting this expression for (1) and requiring the result as ortogonal to all ¢,,

we find the system of ordinary integro-differential equations for f; (t) If only
two terms in (3) are taken into account for the simply supported shell as
O(a,B.t)=] fi(t )smn—+f (t)sin mﬂa}sinkiﬁ (m>n; mnk=12,3,")> 4)
0.’1 al ﬂl
the following system of ordinary integro- differential equations is obtained

f'+a f+byf, +2N f =¢a jrt 7) f,(z)dr,

f2"+amf2—(9] f,+2N f2'=8amj‘r(t—2') f,(r)dr, (5)
Y 0

where
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If we put f, =exp(—N t)}k(t) we will find following system of the two

equations for the functions U,

u, +(ak N° )J 1) z.bu,, —eakjr r)exp[N(t—7)u, (z)dz,  (6)

k,m=12; k;tm.
where y, =y, y,= %/ Using the Laplace transformation we obtain the system

of algebraic equations for the images U, of the function U, respectively and solve
it, we will find
0 - M.y, — 7bt/:2; U2:M1w2+bl//12/7’ 7
MM, +b MM, +b
where
M, =s* +a(1-ef(s))- Ny, =su,(0)+u;(0).

u; (0) and ui'(O) are the initial values of the function ui(t) and its derivatives
respectively.

In these formulas S is the complex parameter of transformation, f“(s) is
the Laplace transform of the multiplication F(t)exp(Nt). Assume Laplace
transforms U; (S) are analytic functions in the whole complex S -plane except for

isolated singular points.

The inverse transformations of functions (7) can be found by using the
contour integral method and the residue theory. For this reason we should know the
poles and the branch points of integrand, having been analytically continued to the
whole S-plane. To get this it is necessary to know the dependence of the

functionf(s) on S, which is equivalent to specify analytic expression of

relaxation kernel F(t). For the simple F(t), which corresponds to the simple

relations between strain and stress, these integrals can be calculated. The contour
integral used here becomes very difficult even in case of the smallest complications
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of F(S) on S. Therefore the method of contour integration becomes unfit for more
real relations between stresses and strains. The simulation by means of a limited set
of elements unnecesserily impairs the freedom and generality of description of the
behaviour of real materials and imposes restrictions that do not at all follow the
fundamental laws of nature. Here we reduce a new solution method of indicated
problems which completely excludes the above meantioned difficulties.

Poles of the functions (7) are the roots of the equation

(s =NV +(s=N?)a, +a, )i-o) +aa, (- +b* =0.  (8)

Now let us define the critical value of parameter b from the equation (8).
We will have to seek below at least one of the roots of the equation (8) in the form
of S=IA4, where A is areal (positive) number, i.e. the vibrations of the shell must
be harmonical. For N = 0 we obtain two algebraic equations from (8):

|- 2(a +a,)+2aa,(1-d,)|=0, ©)
2 -2 +a, -, )+aa,|(i-d, -T2 [+b> =0, (10)
where I', and I'| are the Fouryer transforms of the function I'(t).
Equation (9) gives
P =%(1_grc). (1

This equation defines the root of system (9), (10) as an implicit function.
Substitution of this value for equation (10) gives

b2 =(b” (1-o,) +£T a3, (12)
where b = 22=& aa, .
a, +q,

These are squares of the exact critical values of frequency and parameter b . Here
I',and I'; dependon 4,.

Substituting (12) for (10) and then deviding the result to the difference
A=A it gives
_a+a, (
a +a,
Here ', depends on A, as well. Thus A / A =2a,a, / (af +a; )< 1, we have

A, < A,. Since I'; and I’ are monotonically decreasing functions of A, the value

2 1-4l,).

A, is the smallest frequency of vibrations of the shell.

2
cro

(s+A)[+4+e( T,-T )(a+a,)]+aas(T, —il“s—l:)[g(l“c—il“s -T)+

Using the expressions of /lf , /13 and b_ , equation (8) may be represented as
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+2(1—e,)+2id |+b*—h] =0. (13)
Here for b =D, we obtain the roots s, =+i4, since I' and I'; also depend on

A, . We approximately will find the other two roots of this equation assuming that

l¢(I0 ()~ T, (4))|<<1

.z 1 1 22 2 A
33’4=i|/12—/12(—5+5\/1+8 Fs/l;‘(a.l"'az) j 5

where ,iz zg?\/%+%\/l+(al +a2)2 /1,;482F§ . We see that Z; >A,.
The terms corresponding to the smallest frequency A, describe the nondamped

harmonic vibrations, but the terms corresponding to the frequency /iz describe the

damping vibrations. The motion of the shell is stable but not asymptotically stable.
The damping coefficient may by represented as
a,(a+a,)

. 22 (i+i\/l+gzl“2ﬂ,j‘(a +a,) )%
212 2 s 1 2

<<1. By the method of small

Now let us consider the case ‘bz -b;

parameter we find the approximate value of the root of equation (27)
2_p2 ' (b*-b2

Sziﬂ,l+ b zbcrz + (2 2)2

24(B-2)] 24(%-%)

As we see, if b =D, the harmonic vibrations with the frequency /4, take

(a,+a,)-

place. If b >b_ the frequency of vibrations increases proportionally to b* —b’

and the motion of the shell becomes instable. The amplitudes of vibrations increase
exponentially and proportionally to the product oI (b2 -b2 ) That is, for V >V,

the viscous resistance of material renders destabilization influence to the motion of
the shell. If b<b_, the frequency of vibrations will decrease proportionally to

cr 2
bfr —b’. In this case the motion of the shell is asymptotically stable. Amplitudes of
vibrations decrease exponentially and proportionally to &I (bczr —-b? ) .

In order to obtain the simple harmonical motion for N # 0, we search for
the solutions of equation (8) in form S= N +i4. From equation (8) we obtain the

following two equations, which correspond to real and imaginary parts of (8),
respectively:

75



PROCEEDINGS OF IAM, V.1, N.1, 2012

A —4ANZA* - 2% (a, +a, (1 -, )-2NAel(a, +a, )+

+aa,(l-d,) —aa,s T2 +b> =0

4N/1{/12 —%(1—% )} +

(14)

(15)

2a.a
+&(a, +a, ){/12 —ﬁ(l — e, )} =0.

We will solve equation (15) for 4 by succesive approximation method for the
cases 0 <4, (al +a2) <<NA and 0<NA << (al +a2), assuming [", and
I', are constants.

a) If0<d (a+a,)<<NA we will find
a,(a,-a)

2 a +a,
e - I
An == )4N\/2(a1+a2)

As we see, the critical frequency decreases while increasing & and increases while
increasing N . Substituting this expression for (14) we obtain the equation for the

critical value of parameter b
2

b2, z@(l—grc)2 FAN?AZ 4260 N A, (8, +4,).

-4, . (16)

c

b) If 0<NA<<el (a +a,) then we find

2 N (a _a )2 2 3/2
I~ 228 (g )y—2 2 8% (1_er)| . (D)
a, +a, daa,(a+a,)la+a

Substituting this expression for equation (14) we obtain

2
b2 zalaz(zz_all (1-el,)" +2Nel, 4y (a, +a ) +2,2,6 T +

2 1

=3 _ 4
+ N (3, al)z (1-el,).
d aa, (a2 +al)

Since 4a,a, / ( a +a, )2 <1 the frequency obtained in the formula (16) is greater
than the frequency described by formula (17). The values b" = (a1 +4a, ) / 2 and

(a2 -q ) / 2 correspond to the square of frequency and parameter b for the elastic
shells.
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4. Generalization for non constant Poisson ratio

We use the elastic-viscoelastic correspondence principle between the
Laplace-Carson transforms of elastic and viscoelastic problems [13, 15, 16]. If we

apply the transformation to equation (1) for an elastic plate (8 = 0), in the left

hand side we will obtain "' _E "W _So for viscoelastic plate we should invert the

~ 121-v2 ox*
function as —— f , where
1-v
— 9GK _ 3K-2G
E== =, V=——"
G+3K 2(G +3K)

Here G and K are the Laplace-Carson transforms of the shear and
dilatation relaxation functions G (t) and K (t) , respectively. It is easy to get
E  4G(G+3K)
1-72 3K+4G
where 0, (t) is the Iliushin greep function with the initial value

g2(0)=(1+v)/3(1—v). Here G,v and K denote the initial value of the

=G+3Gg, =N

functions G(t),v(t) and K(t), respectively. The function (¢, (t) can be
obtained both theoretically and directly by the experiment. Let

65=2C_5/3IZ=(1—217)/(1+17), then we have w(t)=3iKG(t)+
+§iG(t— )dJ, () and if K=K is constant, w(t):%@(t) is obtained. Here

T
Ji (1) (J1 (0)=1 K) is the dilatation greep function.

It is easy to verify the equalities
Opax = B =0, =(1-2v)/(14v)=1/4  and @, =&, =0,G(®)/G>0,

here |25|<1 is got. So we have the absolutely and uniformly convergent

expansion in a series
1

1128

and the series expression of the function g, (t)

9,(t) =1—2a)(t)+4[a)oa)(t)+Jt.a)(t—r)da)(z-)}_...,

0

g, =1-20+40° - ,

The inversion
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t

N(t)=E(t)/(1-v*)+3[G(t-7)dg, ()

0

and
E_FoRF=N(0)] £ ()41 [N (t-0)1 ()dr
-7 N(0)3
are easily obtained. It is obvious that N(O)zE/ (1—1/2). If we denote

e, (t) =—N '(t)/N (0) , then we write
E

- f- EZ[f(t)—gj-l”l(t—r)f(r)dr]

1-v 1-v
Thus to write equation (1) for the time dependent Poisson ratio, the kernel F(t)

must be replaced by the function I, (t) If we use I, (t) instead of F(t) in all

above obtained results, we will have the results for non constant Poisson ratio.
If Poisson coefficient is constant, then N (t) =2G (t) / (l - V) . The

relation between the kernel F(t), used in equation (1), and the shear relaxation

function G(t) is obtained as F(t) = —2G'(t)(1+v)/E .

5. Conclusion

In this research the parametric sensitivity analysis of viscoelastic shell
flutter, with an arbitrary difference function of relaxation, is examined.

Viscous resistance in a material of shell leads to decreasing the critical
speed in comparison with elastic shell. If a shell moves with the speed less than

critical speed V,, viscoelastic property of material shows itself as damper, i.e.

reinforces the stability of the motion of the shell. If V =V, then the shell moves
with harmonic vibrations with the smallest frequency. The vibrations with greater
frequency take place with the exponential decay. But if V >V,, viscoelastic

property renders inverse influence to the motion of the shell. The frequency of
vibrations becomes greater than that of harmonic ones and the amplitudes of

vibrations increase exponentially. In this meaning the speed V, may be called

critical, in spite of the case of presence of acrodynamical damper the instability of
the shell in this speed is not yet begining. But viscous property of material reduces

the aerodynamical damper effect. The critical value of speed V., which is obtained

for N =0, is a minimum of all other values of critical speed for nonzero
aerodynamical damper and when the viscous property of material is absent.
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Ortiiklarin aeroozliielastik ragslori vo flatteri
M.H. ilyasov
XULASO

Isdo inteqral Laplas cevirmosi metodu ilo ixtiyari rellaksasiya farqi funksiyasina
malik 06zli silindrik 16vholorin flatterinin hossasligt maesalosinin  parametrik analizi
apartlmigdir. Sorbast axmin siiratinin kritik qiymsti vo tezliyin rogsi Bromvig inteqralinin
polyuslarmin haqiqi hissalorinin sifira boraborliyi sortindon tapilir (bu harmonik hoarokot
halina uygundur). Kritik siirotin vo sabit Puasson omsalli iimumi izotrop viskoelastik
miinasibat ii¢clin uygun tezliklorin doqiq qiymatlori tapilmisdir. Qisa vo uzun zaman {i¢iin
limit hallar1 analiz edilmigdir. Materiallarin ~ 6zliliilk xassolorinin  aerodinamik
tonzimloyicilorin gdstaricilorine nozoron kigik oldugunu noazordo tutaraq aerodinamik
tanzimlayicinin prosesa tosiri Oyranilir.

Acar sozlor: aeroozliielastiklik, ixtiyari relaksasiya funksiyasi, doqiq haller,
sonmo, stabillik, kritik siirat, Laplas ¢evirmasi.

A3poBHUCKOeIaCTHYECKHE BUOPALIMH M MYJIbCAIMU 000J109€eK
ML.T'. UabsicoB
PE3IOME

B or0if paboTre mMeTromoM WHTErpajgbHOTO mpeobpasoBanms Jlammaca mpoBeneH
MapaMeTPUYECKHH aHalN3 YyBCTBUTEIBHOCTH TPOOJEMBI ITyJIBCALMH  BSI3KOYNPYTUX
HUIHHAPHYSCKUX O000J0YeK ¢ MPOM3BOJBHON (DYHKIMEH pPa3HUIBI peIaKcaluu.
Kpurnueckoe 3HaYeHHWE CKOPOCTH CBOOOJHOTO TOTOKA M BHOpAllMKM  YacTOTHI
OTIPEeNIeNIAIOTCS U3 YCJIOBHS, UTO JIeHCTBUTENIBHBIE YacTU IOJIIOCOB HHTerpana bpomsuua
JIOJDKHBI PABHATHCS HYJIO, YTO COOTBETCTBYET FapMOHMYECKOMY IBIDKEHHIO. [losyueHsl
TOYHOE 3HAYEHHE KPUTHYECKOW CKOPOCTH WM COOTBETCTBYIOUIME YaCTOTHI ISl OOIIEero
H30TPOIHOTO BS3KOYNPYTOro COOTHOIIEHHE C TOCTOSIHHBIM KoddduuuentoMm IlyaccoHa.
Pemenns aHanM3upyroTCsl B KPUTHYECKOM, JOKPUTHIECKOM U CBEPXKPUTHUECKOM CITydasX.
[Ipoananu3upoBaHbl TpenienbHBIE CIy4ad Ha KOPOTKHH M JJIMTENbHBIA BpEMEHHBIE
uHTEpBaNbL. M3ywaeTcs BIMSHHE a’pOJMHAMHYECKOM 3aCIIOHKM IIpeZroJaras, 4ro
rapamMeTp BSI3KMX CBOMCTB Marepuana SBISIETCS IOCTATOYHO MaibIM II0 CPaBHEHHUIO C
MIOKa3aTeNeM a3pOANHAMUYECKOH 3aCIOHKH, U HA000POT.

KiroueBble cji0Ba: a3po-BsSI3KOYNPYTOCTh, IPOU3BONIbHAA (DYHKIIUS pETaKCaIllH,
TOYHBIC PEIICHUsS, 3aTyXaHHE, CTa0WIBLHOCTh, KPUTHUYECKAas CKOPOCTh, MPeoOpa3oBaHHE
Jlamnaca.
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